ST.:UCTURE AND CONFORMATION OF PACHYLACTONE, A NEW DITERPENE ISOLATED FROM THE BROWN ALGA, PACHYDICTYON CORIACEUM

Midori Ishitsuka, Takenori Kusumi, Hiroshi Kakisawa*, Yoshiyuki Kawakami⁺, Yasushi Nagai⁺, and Tadashi Sato⁺ Department of Chemistry, The University of Tsukuba, Sakura-mura, Ibaraki 305, Japan ⁺Tsukuba Research Laboratory, Eisai Company Co., Ltd., Toko-dai, Toyosato, Niihari-gun, Ibaraki 300-26, Japan

Abstract: A new diterpene, pachylactone $(\underline{1})$, was isolated from the brown alga, <u>Pachydictyon coriaceum</u>, and its structure together with the stereochemical features was elucidated by spectral analyses.

The brown alga, <u>Pachydictyon</u> <u>coriaceum</u>, has been revealed to contain various type of new diterpenes such as acetyldictyol C,¹ acetylsanadaol,² and acetylcoriacenon²,³ as well as the known diterpenes, dictyolactone^{1,4} and dictyodial.^{1,4} By repeated column chromatography on silica gel of the methanol extract of the alga, followed by HPLC (TSK GEL LS-410K, MeOH) separation, a new compound, which was designated as pachylactone, was obtained as an oil (4 mg from 30 g of the methanol extract), and this paper deals with the elucidation of the structure and stereochemistry of pachylactone.

Pachylactone, $C_{20}H_{30}O_2$ (M⁺, m/z 302), $[\alpha]_D^{25}$ -23.3° (c 0.18, CHCl₃), exhibits IR bands at 1755 (s) and 1660 (w) cm⁻¹, and ¹H-NMR signals (90 MHz) centered at δ 4.60 (2H,ABq,J=16 Hz), which, coupled with UV maximum at 228 nm (ϵ 11700), indicate the presence of an α,β -unsaturated γ -lactone. The fragments at m/z 191 (100%) and 109 (44%) suggest that 1,5-dimethyl-4-hexen-l-yl group, the side chain which is frequently encountered in the diterpenes from the Dictyotaceae sea weeds, ¹⁻⁴ is included in pachylactone. Its ¹³C-NMR spectrum (Table 2) shows a series of signals, the chemical shifts of which correspond well to those reported for the side chain carbons.¹⁻⁴ The presence of a cyclopropane ring in pachylactone is recognized by the multiplet at δ 0.11 (1H) appearing in the ¹H-NMR spectrum (90 MHz).

Analysis of the 400 MHz ¹H-NMR spectrum (Table 1) allowed us to propose the structure <u>1</u> for pachylactone. The upfield signal ascribable to a cyclopropane methylene proton (4-H_b) appears as a quartet (J=5 Hz) at δ 0.11. The coupling pattern shows that this proton is equally coupled with three protons, 4-H_a (J^{gem}=5 Hz), 3-H (J^{trans}=5 Hz), and 5-H (J^{trans}=5 Hz). The other methylene proton signal (4-H_a) appears at δ 0.91 as a double triplet (J^{gem}=5 Hz; J^{cis}_{4a-3}=J^{cis}_{4a-5}=8.5 Hz). From these properties, it is obvious that the cyclo-

propane ring is cis-disubstituted.⁵ Decoupling experiments showed that two other cyclopropane protons exhibit signals at δ 1.0 and 1.7. The downfield chemical shift of the latter suggests that the cyclopropane ring is connected with an unsaturated moiety, the α,β -unsaturated γ -lactone. By means of 2D-correlation spectroscopy (COSY),⁶ together with decoupling works, a tertiary carbon (C-6) possessing a methyl group is revealed to be adjacent

to the other side of the cyclopropane ring. Surprisingly, the proton (6-H) on this tertiary carbon is highly shielded up to δ 0.85, indicating that this proton orients above the plane formed by a carbon-carbon double bond ($C_1=C_2$). Detection of a 5% NOE between 4-H_b (δ 0.11) and 19-H_b (δ 4.46) settled the position of the lactonic carbonyl at C-18 (not at C-19).

The downfield triplet (J=9 Hz) at δ 2.54 is ascribable to an allylic methine (9-H). Irradiation at this signal simplified the multiplets at δ 1.45 (8-H_b) and 2.33. Inversely, irradiation at the latter multiplet (δ 2.33) simultaneously changed the triplet at δ 2.54 into a doublet, and a doublet due to a methyl (17-Me; δ 0.95) into a singlet. These facts show that the multiplet at δ 2.33 is assignable to 10-H. This unusual downfield chemical shift of 10-H, and also a relatively large coupling constant (9 Hz) between 10-H and 9-H are best interpreted by assuming that the rotation about C₉-C₁₀ axis of the side chain would be restricted, and the side chain would take the conformation, in which 10-H has to be located close to the carbonyl group (C-18), and, at the

• Fundance (T)			-	- 4	··
position	No.		carbon No.	<u>1</u>	2
3	δ 1.7	(m)	1	δ 131.1	δ 131.3
4a	0.91	(dt,J=5,8.5 Hz)	2	160.3	162.4
4b	0.11	(q,J=5 Hz)	3	13.6*	13.2
5	1.0	(dtd,J=10,8.5,5 Hz)*	4	8.7	7.9
б	0.85	(m)	5	25.5*	25.7
7a	1.54	(m)	6	35.7	29.8
7b	1.7	(ddd,J=12,7,2 Hz)*	7	39.0	44.8
8a	2.0	(m)	8	30.1	70.9**
8b	1.45	(m)	9	43.0	46.8
9	2.54	(t,J=9 Hz)	10	32.0	30.1
10	2.33	(m)	11	35.4	35.6
11	1.32	(m)	12	25.5	26.4
11	1.05	(m)	13	124.9	124.7
12	1.95	(2H,m)	14	135.0	131.5
13	5.08	(bt,J=7 Hz)	15	25.7	24.7
15	1.66	(3H,s)	16	17.8	17.5
16	1.58	(3H,s)	17	17.7	18.0
17	0.95	(3H,d,J=7 Hz)	18	174.0	173.8
19a	4.68	(d,J=17 Hz)	19	71.7	71.3
19b	4.46	(d,J=17 Hz)	20	23.3	23.7
20	1.00	(3H,d,J=7 Hz)			

Table 1. ¹H-NMR chemical shifts of pachylactone (1).

Table 2. ¹³C-NMR chemical shifts of l and isoacetoxycrenulatin (2).

*Coupling pattern was determined by J-resolved 2D-spectroscopy.

*Assignment was confirmed by heterospin selective decoupling works. **Carbon bearing an acetoxyl group.

same time, the dihedral angle formed by 9-H and 10-H has to be around 150°. A significant NOE was detected for 9-H by irradiating at 7-H_a (δ 1.54) (NOE difference spectrum). From the considerations of all these properties, the conformation of pachylactone, as well as the relative configurations at C-6 and C-9, was deduced as in <u>1a</u>. The unusual upfield chemical shift of 6-H (δ 0.85)

is well interpreted by this conformation; the proton situates not only above the plane of $C_1=C_2$, but also above the cyclopropane ring.⁷ Molecular models show that the dihedral angles formed by 9-H and each of 10-H, 8-H_b, and 8-H_a are 150°, 170°, and 75°, respectively, thus, verifying the triplet nature of 9-H. The coupling constant between 5-H and 6-H was determined to be 10 Hz by J-resolved 2D-NMR spectroscopy.⁶ This magnitude is quite reasonable, since these protons are in the anti-coplanar relationship in <u>la</u>. Detection of NOE's between 19-H_b and 4-H_b (2.2 Å) and also between 7-H_a and 9-H (2.3 Å) is a good evidence for this conformation.

Recently, the structure elucidation of isoacetoxycrenulatin (2) (except for stereochemistry) has been reported.⁸ The present diterpene, pachylactone (1), exhibits the ¹³C-NMR spectrum closely resembling that of 2 (Table 2), which indicates that these diterpenes have the same carbon framework, crenulatane.⁹ On the basis of the ¹H-NMR data reported for isoacetoxycrenulatin (2), ⁸ coupled with the considerations of the proposed conformation (1a) of pachylactone, the stereochemistry of isoacetoxycrenulatin was deduced to be as illustrated in 2.

REFERENCES AND NOTES

- 1. M. Ishitsuka, T. Kusumi, J. Tanaka, and H. Kakisawa, Chem. Lett., 1982, 1517.
- 2. M. Ishitsuka, T. Kusumi, and H. Kakisawa, Tetrahedron Lett., 23, 3179 (1982).
- 3. M. Ishitsuka, T. Kusumi, H. Kakisawa, Y. Kawakami, Y. Nagai, and T. Sato, J. Org. Chem., 48, 1937 (1983).
- 4. J. Finer, J. Clardy, W. H. Fenical, L. Minale, R. Riccio, J. Battaile, M. Kirkup, and R. E. Moore, J. Org. Chem., 44, 2044 (1979).
- J values of cyclopropane protons are well documented; see, for example, W. Brügel, "Handbook of NMR Spectral Parameters", 251, Heyden and Son Limited, 1979.
- S. Macura, K. Wüthrich, and R. R. Ernst, J. Magnetic Resonance, <u>47</u>, 351 (1982).
- For shielding effects of cyclopropane rings, see L. M. Jackman and S. Sternhell, "Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry (2nd edition)", 98, Pergamon Press, 1969.
- 8. N. Enoki, T. Matsumoto, R. Ishida, and S. Urano, The 23rd Symposium on the Chemistry of Natural Products, 474, Nagoya, 1980. The ¹H-NMR data reported for isoacetoxycrenulatin are as follows (Assignments are deduced by the present authors.); δ (CDCl₃) 0.18 (1H,m; 4-H_b), 0.53-0.89 (2H,m; 6-H and 4-H_a), 0.90 (3H,d,J=6 Hz; 17-Me), 0.98 (3H,d,J=7.5 Hz; 20-Me), 1.52, 1.61, 1.87 (each 3H,s; 16-Me, 15-Me, and COMe), 2.36 (1H,m; 10-H), 2.73 (1H,d,J=11 Hz; 9-H), 4.40 (1H,d,J=16 Hz; 19-H_b), 4.66 (1H,d,J=16 Hz; 19-H_a), 4.95 (1H, t,J=7 Hz; 13-H), 5.05 (1H,t,J=5 Hz; 8-H; J_{8-7a}=J_{8-7b}=5 Hz, J₈₋₉=0 Hz).
- 9. D. J. Faulkner, Tetrahedron, 33, 1421 (1977).

(Received in Japan 30 July 1983)

5120